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We present a density functional theory for a mixture of hard rods and polymer modeled as chains of hard
tangent spheres which refines the theory proposed in the paper by BrykfPhys. Rev. E68, 062501s2003dg. The
improvement involves a semiempirical formula for the contact value of the sphere-sphere radial distribution
function of the sphere and needle reference system, which includes the important depletion effect induced by
the needles. The new functional yields slightly broader phase coexistence envelopes but the changes affect
mainly the polymer-rich binodal branches. After analyzing the bulk phase behavior the structure of hard-rod–
polymer mixture close to a hard wall is examined. An increase of the chain length leads to an increase of the
average polymer segment contact value. This behavior may lead to a qualitative difference of the polymer
segment profiles: from an effective repulsion of the polymer segments to an effective attraction, which can be
observed by a change of sign of the excess adsorption. By analyzing the orientational order parameter profiles
we have found that the polymer coils decrease the tendency of needles to adopt anisotropic configurations.
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I. INTRODUCTION

Mixtures of nonadsorbing polymer and colloidal particles
often exhibit a phase separationf1g even if all interactions
are purely repulsive. A simple theoretical model giving an
insight into this phenomenon is the Asakura-Oosawa-Vrij
sAOVd model of colloid-polymer mixturesf2,3g where the
ideal polymer coilssmodeled as spheresd can freely overlap
but the polymer-colloid and colloid-colloid interactions are
hard sphere like. A tendency of the system to reduce the
volume excluded to the depletion agent, in this case the poly-
mer coils, gives rise to attractive depletion interactions be-
tween the colloidal particles. There are many experiments
concerning phase transitions in bulk systems; for a recent
review see, e.g., Ref.f4g. In one experimentf5g the free
interface of a demixed colloid-polymer mixture was ob-
served in real space and its thermal capillary waves were
studied. Recently, studies of inhomogeneous colloid-polymer
mixtures were also initiated. It has turned out that mixtures
of colloids and polymer, when brought close to a hard wall,
may develop a sequence of layering transitions in the partial
wetting regime prior to a transition to complete wettingf6,7g.
The so-called entropic wetting transition was confirmed ex-
perimentally by recent measurements of the contact angle in
mixtures of silica particles and polydimethylsiloxan dis-
persed in cyclohexanef8,9g.

Other macroparticles, such as silica coated boehmite rods
or stiff polymeric rodsf10–12g, have been also successfully
used as depletion agents in colloidal suspensions. Bolhuis
and FrenkelsBFd introduced a simple model of a mixture

consisting of hard sphere colloids and hard infinitely thin
rodsf13g. Although the vanishing thickness and volume con-
stitutes a significant simplificationse.g., it rules out the
isotropic-nematic transitiond, the proposed model does cap-
ture the basic features of the above-mentioned experimental
systems. Bolhuis and Frenkel determined the phase diagrams
of the fluid-fluid demixing transition by means of Gibbs en-
semble Monte Carlo simulations and free volume theory and
found a good agreement between the theory and simulations.

Among various theoretical approaches density functional
theory sDFTd appears to be particularly well suited to study
various problems associated with inhomogeneous fluidsf14g.
It has emerged that fundamental measure theorysFMTd f15g
provides a very accurate description of multicomponent hard
spheres. This approach is based on the deconvolution of the
Mayer f functions in terms of weight functions which de-
pend on the geometrical properties of the spheres. Rosenfeld
f16g generalized his approach to mixture of convex hard-
body molecules formulating thus a very general framework,
based on geometrical properties of the particles, for treat-
ment of complex, multicomponent fluidsf17–19g. Although
the decomposition of the corresponding Mayerf functions in
terms of a finite number of convolutions of weight functions
is not possible for the arbitrary hard-body fluid, Schmidtf20g
was able to provide an important, specific counterexample
where such deconvolution is possible. His density functional
theory for mixtures of vanishingly thin hard rod and hard
spheresf20g incorporates the exact low-density limit and
yields the same equation of state as that of Ref.f13g. It is
worth noting that Schmidt’s functional gives distribution pro-
files that are in very good agreement with simulations for
inhomogeneous sphere-needle systemsf21g. Most recent re-
finements by Braderet al. f22g and by Esztermann and*Electronic address: pawel@paco.umcs.lublin.pl

PHYSICAL REVIEW E 71, 011510s2005d

1539-3755/2005/71s1d/011510s8d/$23.00 ©2005 The American Physical Society011510-1



Schmidt f23g aim at including effects due to nonvanishing
rod thickness. FMT for hard-body anisometric particles was
also used to study wetting in the BF modelf24g, the deple-
tion potentials of hard spherocylinders close to a wallf25g,
and to investigate model amphiphilic systemsf26,27g.

In a recent workf29g one of ussP.B.d proposed a func-
tional for mixtures of vanishingly thin hard rods and polymer
built of freely-jointed tangent hard spheres. The functional
was constructed by combining Schmidt’s functional for the
BF model f20g with another FMT-class theory, the Yu and
Wu functional for hard-sphere polymerf30g. In the present
paper we reexamine the approximation for the contact value
of the radial distribution function used in Ref.f29g and pro-
pose a simple way of improvement. The new functional is
used in subsequent investigations of the structure of the hard-
rod–polymer fluid close to a hard wall.

II. THEORY

A. Fundamental measure theory functional

In this work we consider a mixture of hard, vanishingly
thin needlessspeciesNd of lengthL and polymersspeciesPd
represented as chains built ofM tangentially bonded hard-
sphere segments of diameters. We further assume that there
are no torsional or bending potentials imposed on the poly-
mer segments, i.e., the monomers are freely jointed and any
arbitrary polymer configuration free of intermolecular and
intramolecular overlap is allowed. For such polymer model
the total bonding potentialVbsRd sa sum of bonding poten-
tials vb between the monomersd satisfies

expf− bVbsRdg = p
i=1

M−1
dsur i+1 − r iu − sd

4ps2 , s1d

where R;sr 1,r 2, . . . ,r Md denotes a set of coordinates de-
scribing the monomer positions. The needle-needle potential
is VNN=0 for all separations and orientations, while the
polymer-segment–needle potential,VPN, and the pair poten-
tial between two polymer segments,VPP, is infinite if a pair
of objects overlap and zero otherwise. A sketch of the present
model is depicted in Fig. 1. Clearly, such a model of polymer
is highly simplified but it satisfies the requirement ofsid
polymer having excluded volume andsii d obeying the scal-
ing regime for sufficiently long chains. It is also, in principle,
straightforward to incorporate attractive interactions between
polymer segments.

In specifying the functional we closely follow Ref.f29g.
We begin by writing down the grand potentialV of the sys-
tem as a functional of local densities of polymerrPsRd and
needlesrNsr ,vd

VfrPsRd,rNsr ,vdg = FfrPsRd,rNsr ,vdg

+E dRrPsRdfVext
sPdsRd − mPg

+E dr E dv

4p
rNsr ,vdfVext

sNdsr ,vd − mNg.

s2d

In the abovev is a unit vector describing the orientation of
the rod,Vext

sPdsRd, mP, Vext
sNdsr ,vd andmN are the external and

the chemical potentials for polymer and rods, respectively.
Traditionally, the free energy of the systemF is split into
ideal and excess parts,F=Fid+Fex. For thesexactd ideal part
of the free energy we refer the reader to our earlier paper
f29g.

A starting point of every FMT-class DFT is the ansatz that
the excess free energy densityF can be expressed as a
simple functionof the weighted densitiesna

sid. Our prescrip-
tion for F closely follows the first order thermodynamic per-
turbation theorysTPT1d of Wertheimf31g, who showed that
the excess free energy of a polymer system can be treated as
a sum of the excess free energy of the reference system con-
taining unbonded monomers plus a perturbation based on
connecting the monomers together to form the polymer coils.
What makes TPT1 extremely attractive from the practical
point of view is that the perturbation excess free energy con-
tains information about the radial distribution function
sRDFd of the unbonded monomers in the reference system
only.

Yu and Wuf30g extended Wertheim’s first-order perturba-
tion theory to inhomogeneous mixtures of tangentially
jointed hard-sphere chains by proposing a density functional
theory, where the contribution to the excess free energy den-
sity FP due to the chain connectivity is expressed in terms of
FMT-style weighted densities. Following Ref.f30g we as-
sume thatFex is a functional of the local density of rods and
average segment densitiesrPSsr d defined as

rPSsr d = o
i=1

M

rPS,isr d = o
i=1

M E dRdsr − r idrPsRd, s3d

whererPS,isr d is the local density of the polymer segmenti.
The total excess free energy of an inhomogeneous mixture of

FIG. 1. Sketch of the system considered in this work. Shown are
10-mers built of freely-jointed tangent hard spheres and hard rods
against a hard wall. Due to the symmetry of the problem the con-
figuration of a needle is fully described by specifyingz the distance
of the center of the needle from the wall andu the angle between
the needle and the wall.
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hard rods and tangent hard-sphere chains can therefore be
written as

bFex=E dr E dv

4p
fFPNshna

sidjd + FHSshna
sPdjd + FPshna

sidjdg.

s4d

In the above,FPN+FHS describes the reference mixture of
hard spheres and hard rods, while the excess free energy
density due to the chain connectivityFP is an “inhomoge-
neous counterpart” of the perturbation term in TPT1.

There are several expressions for the hard-sphere partFHS
of the excess free energy density and we have some freedom
in selecting a particular formula. For the present problem we
choose the “White-Bear” version of FMTf32,33g in conjunc-
tion with a modification allowing for the occurrence of a
stable freezing transitionf34g:

FHSshna
sPdjd = − n0

sPd lns1 − n3
sPdd +

n1
sPdn2

sPd − nV1
sPd ·nV2

sPd

1 − n3
sPd

+ sn2
sPdd3s1 − j2d3n3

sPd + s1 − n3
sPdd2 lns1 − n3

sPdd
36psn3

sPdd2s1 − n3
sPdd2 ,

s5d

where jsr d= unV2
sPdsr du /n2

sPdsr d. The polymer weighted densi-
ties na

sPdsr d are evaluated from

na
sPdsr d =E dr 8rPSsr 8dwa

sPdsr − r 8d, s6d

where the weight functionswa
sPdsr d, a=3,2,1,0,V2,V1 are

given in Ref.f20,22g and f29g.
The polymer-needle contribution is taken from Schmidt’s

functional for hard-rod–hard-sphere mixturesf20g. Follow-
ing this approach the excess free energy density due to van-
ishingly thin needles can be written as

FPNshna
sidjd = − n0

sNd lns1 − n3
sPdd +

n1
sNdn2

sPNd

1 − n3
sPd , s7d

where the needle weighted densities,na
sNd, are obtained

throughsspatiald convolutions of the needle local density and
the corresponding orientation-dependent weight functions

na
sNdsr ,vd =E dr 8rNsr 8,vdwa

sNdsr − r 8,vd, a = 0,1.

s8d

The “mixed” polymer segment-needle weighted density,
n2

sPNd, is obtained via spatial convolution of the polymer seg-
ment density and an orientation-dependent weight function

n2
sPNdsr ,vd =E dr 8rPSsr 8dw2

sPNdsr − r 8,vd. s9d

As in every FMT, weight functions are connected with the
geometrical properties of the particles. For the BF model of
hard-rod–hard-sphere mixtures Schmidt was able to provide
a set ofwa

sid that leads to acompletedeconvolution of the
corresponding Mayer bondf ij =exps−bVijd−1. These weight

functions are given in Ref.f20g. Equations s5d and s7d
specify the reference part of the excess free energy.

Yu and Wuf30g proposed a way of adopting the pertur-
bation part, based on Wertheim’s TPT1, to inhomogeneous
mixtures of chains of freely-jointed tangent hard spheres. For
the present system we apply a similar strategy and write the
excess free energy density due to the chain connectivity as

FPshna
sidjd =

1 − M

M
n0

sPdz lnfyhs+hrss+;hna
sidjdg, s10d

wherez=1−nV2
sPd ·nV2

sPd / sn2
sPdd2, while yhs+hr denotes the con-

tact value of a sphere-sphere RDF in the reference mixture of
hard spheres and hard rods. Unfortunately, to the best of our
knowledge, no closed and accurate expression for this exists;
therefore further approximations are necessary. The first
guess is to ignore the influence of the rods on the contact
value of the RDF completely and to approximateyhs+hr by
the contact value of a sphere-sphere RDF in the reference
system of pure hard spheres,yhs, as proposed by one of us
sP.B.d in Ref. f29g. To this end we follow Ref.f30g and
employ

yhsss+;hna
sPdjd =

1

1 − n3
sPd +

n2
sPdsz

4s1 − n3
sPdd2 +

sn2
sPdd2s2z

72s1 − n3
sPdd3 .

s11d

It is interesting to point out that it would also be possible to
follow the different approach of Ref.f35g to obtain an ap-
proximation for the contact value of the RDF. The resulting
expression is slightly more complicated than Eq.s11d but
yields numerically very similar results in the whole fluid
range. The above equation, together with Eqs.s5d, s7d, and
s10d, completely specifies the functional, and we abbreviate
this theory as DFT1. This approximation rendersFP inde-
pendent on the density of rods.

B. Approximation for the contact value of the radial
distribution function

It is expected that for high densities of rods DFT1 will
lead to discrepancies connected with rod-induced depletion
interactions. The overall effect is that the contact value of a
sphere-sphere RDF in the hard-rod–hard-sphere mixture is
higher compared to the corresponding contact value for the
one-component hard-sphere fluid,yhs+hr.yhs. In order to im-
prove the functional these depletion interactions, which in
the case of noninteracting rods are found to be purely attrac-
tive, should be taken into account. We can do so by “inte-
grating out” the needle degrees of freedom to arrive at an
effective one-component description whereby colloidal
spheres interact via an effective pair potential—the depletion
potentialWsrd. This approach has already been used in re-
cent studies of depletion potentialsf36g and wettingf24g in
hard-rod–hard-sphere mixtures. FromWsrd we can extract
the contact value of the sphere-sphere RDF. In principle, this
can be achieved by several methods, e.g., by solving numeri-
cally the Ornstein-Zernike equation with an adequate closure
or by minimizing a DFT that employs the depletion potential
f24g, but since we want to use this result in subsequent DFT
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calculations, an analytical formula would seem more practi-
cal. Therefore, we use the well-known high temperature ap-
proximation

yhs+hrss+;hna
sidjd = yhsss+;hna

sPdjdexpf− bWss+;hna
sidjdg.

s12d

Yamanet al. f37g proposed a quasiexact fit for the contact
value of a depletion potential between two identical spheres
sof diametersd immersed in a sea of hard rods of lengthL.
For the present problem we recast it using FMT-style
weighted densities

bWss+;hna
sidjd = W̄ss,Ld

n0
sNd

1 − n3
sPd expSL

4

n2
sPNd

1 − n3
sPdD , s13d

where

W̄ss,Ld = −
p

12
L2s

1 + 1.7524sL/sd
1 + 2.66396sL/sd + 3.929sL/sd2 .

s14d

In the limit of vanishing rod density the contact value of
yhs+hr, given in Eq.s12d, reduces to the accurate approxima-
tion of the contact value of the RDF of a pure hard-sphere
fluid, Eq. s11d, and is quasiexact in the limit of vanishing
sphere density. If both the sphere and the rod density is non-
vanishing, the approximation of Eq.s12d can be tested nu-
merically, e.g., by DFT within an effective one-component
picturef24g. We find that, for moderate densities of the rods
and sphere, Eq.s12d and the numerical results agree very
nicely within a few percent. For high densities of rods and
sphere the competition between packing effects and the
highly attractive depletion potential reduces the contact value
of the RDF considerably as compared to the high tempera-
ture approximation. However, this does not seem to be a
serious problem. In the case ofM =1, when the fluid-fluid
phase separation is located at high reservoir densities of the
rods and hence the discrepancy between Eq.s12d and thereal
contact value of the RDF is expected to be largest, the dif-
ference between the binodal predicted by the new and the old
approach vanishes. AsM is increased, the binodal of the
fluid-fluid phase separation moves to lower reservoir densi-
ties of the rods and the approximation of Eq.s12d becomes
more reliable. Note, however, that if the size ratioq becomes
large, effective many-body interactions becomes more im-
portant so it should be expected that the predictions of the
contact value of the RDF based solely on the knowledge of
the depletionpair interactionWsrd becomes less reliable.

Equationss12d–s14d together with Eqs.s5d, s7d, and s10d
form a complete prescription for the new functional. The
DFT2 theory still reduces to Schmidt’s functionalf20g if M
=1 and to Yu and Wu’s functionalf30g if the density of rods
rN=0. The functional islinear in the local density of rods.

III. RESULTS

A. Demixing in the bulk phases

If the local densities of both species are isotropic, Eqs.
s6d, s8d, and s9d can be evaluated analytically. The vector

weighted densities vanish whereas the scalar weighted den-
sities become proportional to the corresponding bulk densi-
ties. It is straightforward to obtain the corresponding expres-
sions for the free energy, pressure, and chemical potentials of
both speciesf29g.

Under favorable conditions a mixture of polymer and hard
rods demixes into polymer-richsrod-poord and polymer-poor
srod-richd phases. The coexisting equilibrium densitiessbin-
odalsd, the spinodals, and the critical points were obtained by
applying a procedure described in detail in Ref.f29g.

In Fig. 2 we show examples of binodals resulting from the
present theory DFT2ssolid linesd, and from the DFT1 theory
from Ref.f29g sdashed linesd. The phase diagrams, plotted in
the polymer packing fraction,hP=sp /6ds3MrP, versus the
dimensionless needle reservoir density,rN

srdL2s, representa-
tion, were evaluated for systems withM =1,2,10 forcon-
stantq=L /s=1. For the special caseM =1 sthe uppermost
diagramd both theories reduce to the BF theory.

We observe that, with increase of the chain length, both
theories predict broadening of the phase coexistence and a
shift of the critical point towards lower polymer packing
fractions and lower reservoir needle densities. The binodals
from DFT2 theory are somewhat broadened, especially the
polymer-rich side of the diagrams, leading thus to a larger
difference between the coexisting polymer densities but the
overall effect is rather moderate. This may come as a surprise
at first but is in fact just a fortunate consequence of the
above-mentioned shift towards lower reservoir needle densi-
ties.

We have also analyzed the phase behavior in the limit of
very long polymer chains resulting from DFT2 theory. Al-
though the relevant figure is not shown here, we have veri-
fied that in the limit M→` the polymer critical packing
fraction tends to zero. On the other hand, the rod critical

FIG. 2. Phase equilibria for hard-rod–polymer mixtures result-
ing from the present theorysDFT2, solid linesd and the theory from
Ref. f29g sDFT1, dashed linesd plotted in the polymer packing frac-
tion hP=sp /6ds3MrP and dimensionless needle reservoir density
rN

srdL2s representation. The binodals were evaluated for systems
with size ratioq=L /s=1 and polymer withM =1, 2, and 10. For
M =1 both theories yield identical phase diagrams. Black circles
indicate the critical points of the demixing transitions.
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density tends to a constant virtually independent on the size
ratio q. This behavior is characteristic of the so-called “pro-
tein limit” of colloid-polymer mixturesf28,38g and was also
found to hold within DFT1 theoryf29g.

B. Hard-rod–polymer mixtures close to a hard wall

The most important feature of every DFT is the ability to
describe inhomogeneous systems. In the present section we
apply the theory outlined in Sec. II to describe a mixture of
hard rods and tangent hard sphere chains close to a hard
structureless wall. The equilibrium profiles of both species
can be obtained by considering the condition

dVfrPsRd,rNsr ,vdg
drPsRd

=
dVfrPsRd,rNsr ,vdg

drNsr ,vd
= 0, s15d

which leads to the following equation for the average seg-
ment density profile

rPSsr d = expsbmPd E dRo
j=1

M

dsr − r jd

3expF− bVbsRd − bo
l=1

M

llsr ldG , s16d

wherel jsr jd is given by

l jsr jd =
dFex

drssr jd
+ v jsr jd, s17d

andv jsr jd being an external potential acting on thej th seg-
ment. Equations16d can be rewritten in a more compact form

rPSsr d = expsbmPdo
j=1

M

expf− bl jsr dgGjsr dGM+1−jsr d,

s18d

where the propagator functionGjsr d is determined from the
recurrence relation

Gjsr d =E dr 8 expf− bl jsr 8dg
dss − ur − r 8ud

4ps2 Gj−1sr 8d

s19d

for j =2,3, . . . ,M and with G1sr d;1. Conversely, the
orientation-dependent needle density profile can be obtained
from

rNsr ,vd = expsbmNdexpF− bVext
sNdsr ,vd − b

dFex

drNsr ,vdG .

s20d

In the planar symmetry the average segment density pro-
file becomes a function of the distancez from the wall,
rPSsr d;rPSszd, whereas the needle density profile depends
on z and the orientationu, rNsr ,vd;rNsz,ud, with 0øu
øp /2 scf. Fig. 1d. Equationss18d and s20d can be solved
numerically by a standard Picard methodf22,30g.

Let us now discuss the structure of the hard-rod polymer
mixtures close to a hard wall. We restrict ourselves to the
case of supercritical state points such that the system is free
of the onset of the wetting transition. In Fig. 3 we show the
representative examples of the average segment density pro-
files of tangent hard-sphere chains consisting ofM =1, 2, 5,
10, and 100 number of beads, evaluated for the bulk segment
density rPS

sbds3=0.1 in a hard-rod–polymer mixturessolid
linesd and in a one component systemsdashed linesd. Bulk
density of rodsrN

sbdL2s=4 in the system for all chain lengths
except forM =100 in whichrN

sbdL2s=2.5. For systems with-
out needles one observes that the polymer is depleted from
the region close to the wall. The contact density forM .1 is
lower than the density in the bulk. This effect, characteristic
for low segment densities, has been already reported in the
literature f39–41g. The addition of the needles causes the
contact density to increase and the region in the vicinity of
the wall is now enriched in polymer. The excess adsorption
isotherm, G=edzfrPSszd−rPS

sbdg, where we integrate fromz
=s /2 where the density profile make the jump to infinity,
may even change the sign; for instance, forM =10 fcf. Fig.
3sbdg one hasGs2=−0.055480 for the one-component sys-
tem sdashed lined, whereas in the mixturessolid lined Gs2

=0.034673. Only for the longest chains studied,M =100 fcf.
Fig. 3sbdg the lower needle density was insufficient to sig-
nificantly alter the structure of the polymer fluid. In this case
one observes a further broadening of the depletion zone.

Within our theory it is possible to track down the profiles
of particular segments. In Fig. 4 we display the middlessolid
linesd and endsdashed linesd segment density profiles for a

FIG. 3. Average segment density profiles of tangent hard-sphere
chains with the bulk segment densityrPS

sbds3=0.1 in a hard-rod–
polymer mixture ssolid linesd and in a one component system
sdashed linesd close to a hard wall. The dimensionless needlessys-
temd density rN

sbdL2s=4 for all chain lengths except forM =100,
whererN

sbdL2s=2.5. The chain lengthsM are marked in the figure.
The size ratio in both partsq=1.
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mixture of hard rods and 100-mers evaluated atrPS
sbds3=0.4

fpart sadg and rPS
sbds3=0.1 fpart sbdg. Shown are also the

middle sdotted linesd and endsdash-dottedd segment density
profiles of the cone component 100-mer fluid at the same
bulk segment densities. We note that, similar to the average
segment profiles from Fig. 3, the contact values of both
middle and end segment profiles increased but qualitatively
the structure of the profiles remains unchanged, i.e., the end
segments always adsorb preferentially to the middle seg-
ments, irrespective of the polymer density. Thus we conclude
that the addition of the needles does not alter qualitatively
the orientation of the polymer close to the wall.

The structure of the hard rods close to the hard wall is
investigated in Fig. 5. Partsad shows the orientation averaged
density profiles of needles in a mixture with polymer of dif-
ferent chain length. The polymer segment densityrPS

sbd=0.1,
whereas the needlessystemd densityrN

sbdL2s=4 for M =1, 2,
and 10, andrN

sbdL2s=2.5 for M =100. We note that forM
=1 si.e., for the hard-rod–hard-sphere mixtured the first sharp
maximum atz/s<0.5 is slightly below the bulk needle den-
sity and is followed by a subsequent minimum. For longer
chain length this minimum becomes shallower but longer
ranged. This is accompanied by the gradual increase of the
first maximum. Partsbd displays the orientation needle den-
sity at the distance of closest approach of the needle’s center
to the wallz*sud=cossudL /2 for systems from Fig. 5sad. An
increase of the chain length leads to an increase of the con-
tact value for small angles and a decrease of the contact
values close top /2. This implies that an orientational order
of needles at the contact decreases as the chain length in-

creases. The integrals of the profiles from Fig. 5sbd are re-
lated to the pressuref42g. For the present case of a mixture
of hard rods and polymer it can be shown that

bP = rPSss/2d +E dv

4p
rNsz* ,ud. s21d

The present DFT is constructed so that this sum rule is sat-
isfied and hence can be used to establish the correct imple-
mentation of the DFT and verify the numerical accuracy of
our calculations. For example, forM =10 systems from Fig.
5 the pressurebPs3=4.5475, whereas the right-hand side of
Eq. s21d obtained from numerical calculations is 4.5461sthe
level of agreement depends of course on the grid sized. The
wall contact distribution sum rule for a model hard-body
amphiphiles within FMT, which is somewhat similar to the
sum rule Eq.s21d, was studied in Ref.f27g and was used to
verify their numerical procedures.

Further insight into the structure of the needles close to a
hard wall can be inferred from the orientational order param-
eter profile

FIG. 4. Middle ssolid and dotted linesd and endsdashed and
dash-dotted linesd segment density profiles of tangent hard-sphere
100-mers in a hard-rod–polymer mixturessize ratioq=1, solid and
dashed linesd and in a one component systemsdotted and dash-
dotted linesd close to a hard wall. The profiles insad were evaluated
for rPS

sbds3=0.4 whereas insbd for rPS
sbds3=0.1. The bulk needlessys-

temd density in both partsrN
sbdL2s=2.5. The profiles are normalized

by the corresponding bulk density. FIG. 5. sad Orientation averaged density profiles of needles in a
hard-rod–polymer mixture close to a hard wall. The profiles were
evaluated for different chain lengthsM listed in the figure and for
the size ratioq=1. The bulk polymer segment densityrPS

sbds3=0.1
whereas the bulk needlessystemd densityrN

sbdL2s=4 for M =1, 2,
and 10, andrN

sbdL2s=2.5 for M =100. The profiles are normalized
by the corresponding bulk density.sbd Needle density profiles
evaluated along the line of closest contact with the wallz*sud
=cossudL /2. The profiles were evaluated for the systems corre-
sponding tosad. The chain lengthsM are marked in the figure.
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kP2scosudl =
E dvrNsr ,vdP2scosud

E dvrNsr ,vd
, s22d

where P2sxd=3/2x2−1/2 is the second Legendre polyno-
mial. Positive values of the order parameter indicate a ten-
dency to align perpendicular to the wall while negative val-
ues point to parallel orientation to the wall. The order
parameter profiles shown in Fig. 6 were evaluated for the
systems with the polymer segment bulk densityrPS

sbd=0.4 and
for the bulk needlessystemd densityrN

sbdL2s=4 for M =1, 2,
and 10, andrN

sbdL2s=2.5 for M =100. The profiles show os-
cillations indicating that there exist mutually interleaved
“layers” of needles that prefer normal and parallel orienta-
tion. As the distance from the wall increases, these oscilla-
tions are gradually damped. An increase of the chain length
leads to a stronger dampening effect and decreases the ten-

dency of needles to adopt anisotropic configurations.

IV. CONCLUSIONS

In this work we propose an improved version of the fun-
damental measure theory for mixtures of hard rods and poly-
mer built of freely-jointed tangent hard spheres. A semi-
empirical prescription for the contact value of the depletion
potential between two spheres immersed in a sea of rods and
the high temperature approximation are used, yielding a pre-
scription for the contact value of the sphere-sphere radial
distribution function in hard-rod–hard-sphere mixture that
depends on the needle density. When compared with the old
formula f29g the new functional gives slightly broader phase
coexistence envelopes but the changes affect mainly the
polymer-rich binodal branches. In the long-chain limit the
critical needle density tends toward a finite value almost in-
dependent on the size ratioq.

We have also analyzed the structure of hard-rod–polymer
mixtures close to a hard wall. An increase of the chain length
leads to an increase of the average polymer segment contact
value. This behavior may lead to a qualitative difference of
the polymer segment profiles, from an effective repulsion to
an effective attraction, and to the opposite sign of the excess
adsorption. By analyzing the orientational order parameter
profiles we have found that the polymer coils decrease the
tendency of needles to adopt anisotropic configurations.

It would be of interest to investigate interfacial behavior
and in particular the wetting of the hard wall in such sys-
tems. One can expect a wealth of surface phase transitions,
similar to that found in Ref.f24g. Another research direction
is to take into account the rod-rod excluded volume interac-
tions, similar in spirit to recent theory proposed by Eszter-
mann and Schmidtf23g. This would open a possibility of the
orientational phase transitions in such systems. Some of
these topics are currently being investigated.
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