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We present a density functional theory for a mixture of hard rods and polymer modeled as chains of hard
tangent spheres which refines the theory proposed in the paper byMy&. Rev. E68, 062501(2003]. The
improvement involves a semiempirical formula for the contact value of the sphere-sphere radial distribution
function of the sphere and needle reference system, which includes the important depletion effect induced by
the needles. The new functional yields slightly broader phase coexistence envelopes but the changes affect
mainly the polymer-rich binodal branches. After analyzing the bulk phase behavior the structure of hard-rod—
polymer mixture close to a hard wall is examined. An increase of the chain length leads to an increase of the
average polymer segment contact value. This behavior may lead to a qualitative difference of the polymer
segment profiles: from an effective repulsion of the polymer segments to an effective attraction, which can be
observed by a change of sign of the excess adsorption. By analyzing the orientational order parameter profiles
we have found that the polymer coils decrease the tendency of needles to adopt anisotropic configurations.
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[. INTRODUCTION consisting of hard sphere colloids and hard infinitely thin
rods[13]. Although the vanishing thickness and volume con-

ft hibi h Y it all : stitutes a significant simplificatiorfe.g., it rules out the
often exhibit a phase separatiph] even if all interactions  j5,opic-nematic transition the proposed model does cap-
are purely repulsive. A simple theoretical model giving an

o ) : . .ture the basic features of the above-mentioned experimental
Insight into this phenomenon is the Asakura-Oosawa-Vrijgygiems Bolhuis and Frenkel determined the phase diagrams
(AOV) model of colloid-polymer mixture$2,3] where the ¢ o fi1id-fluid demixing transition by means of Gibbs en-
ideal polymer cmls(queled as SPhe”es?” freely oyerlap semble Monte Carlo simulations and free volume theory and
but the ponm_er-coIIO|d and colloid-colloid interactions are ¢ 14 4 good agreement between the theory and simulations.
hard sphere like. A tendency of the system to reduce the  p, 0 various theoretical approaches density functional

volume excluded to the depletion agent, in this case the pOIVtheory(DFT) appears to be particularly well suited to study

mer coils, gives_ rise to gttractive depletion interactions bei/arious problems associated with inhomogeneous fididk
tween the colloidal part!qles. There are many experiments - emerged that fundamental measure théeMT) [15]
concerning phase transitions in bulk systems; for a recer‘|5rovides a very accurate description of multicomponent hard
review see, e.g., Ref4]. In one experimentS] the free  ghpares This approach is based on the deconvolution of the
interface of a demixed colloid-polymer mixture was 0b- \javer t functions in terms of weight functions which de-

served in real space and its thermal capillary waves We:Eend on the geometrical properties of the spheres. Rosenfeld

Mixtures of nonadsorbing polymer and colloidal particles

studied. Recently, studies of inhomogeneous colloid-polyme 16] generalized his approach to mixture of convex hard-

mlxture§ were also initiated. It has turned out that mixture ody molecules formulating thus a very general framework,
of colloids and polymer, when brought close to a hard Wa”é:fn

. o ; ’based on geometrical properties of the particles, for treat-
may develop a sequence of layering transitions in the parti ent of complex, multicomponent fluide7-19. Although

wetting regime prior to a transition to complete wett[igg7]. the decomposition of the corresponding Magiéunctions in

The so-called entropic wetting transition was confirmed eXye s of 4 finite number of convolutions of weight functions

pgrimentally bY. recent measurements Of the contact ang.le i@ not possible for the arbitrary hard-body fluid, Schnjzil]
mixtures of silica particles and polydimethylsiloxan dis- was able to provide an important, specific counterexample

persed in cyclohexz_ar{és,g]. . . here such deconvolution is possible. His density functional
Other macroparticles, such as silica coated boehmite ro eory for mixtures of vanishingly thin hard rod and hard

or Sgﬁ poljym:anp rods[lO—l_Z, hal\I/e_g)elen also syccesgullhl spheres[20] incorporates the exact low-density limit and
used as depletion agents In colloidal suspensions. Bolhulge|ys the same equation of state as that of IRE3]. It is

and Frenkel(BF) introduced a simple model of a mixture worth noting that Schmidt’s functional gives distribution pro-
files that are in very good agreement with simulations for

inhomogeneous sphere-needle systgPi3. Most recent re-

*Electronic address: pawel@paco.umcs.lublin.pl finements by Bradeet al. [22] and by Esztermann and
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Schmidt[23] aim at including effects due to nonvanishing
rod thickness. FMT for hard-body anisometric particles was
also used to study wetting in the BF moda#], the deple-
tion potentials of hard spherocylinders close to a Wa8],
and to investigate model amphiphilic systef@$,27).

In a recent workf29] one of us(P.B) proposed a func-
tional for mixtures of vanishingly thin hard rods and polymer
built of freely-jointed tangent hard spheres. The functional
was constructed by combining Schmidt's functional for the
BF model[20] with another FMT-class theory, the Yu and
Wu functional for hard-sphere polymg&B0]. In the present
paper we reexamine the approximation for the contact value
of the radial distribution function used in R¢29] and pro-
pose a simple way of improvement. The new functional is
used in subsequent investigations of the structure of the hard-
rod—polymer fluid close to a hard wall.

Res

FIG. 1. Sketch of the system considered in this work. Shown are
10-mers built of freely-jointed tangent hard spheres and hard rods
Il. THEORY against a hard wall. Due to the symmetry of the problem the con-
figuration of a needle is fully described by specifyinthe distance
of the center of the needle from the wall addhe angle between
In this work we consider a mixture of hard, vanishingly the needle and the wall.

thin needlegspeciesN) of lengthL and polymer(speciesP)
rep;]resented as tchaf|g§ bwltte%fvtafngtinnally bondtehd tht?]rd' In the abovew is a unit vector describing the orientation of
sphere segments of diameterWe further assume that there rod,VgX’i(R), o, Vgi(r,w) and uy, are the external and

are no torsional or bending potentials imposed on the poly: 6 chemisal potentials for polvmer and rods. respectivel
mer segments, i.e., the monomers are freely jointed and ant}r} P poly ' P Y-

arbitrary polymer configuration free of intermolecular and, drsgllt;r:jag’c;hsi frgﬁg e—nFe-r%yF of [t:fg)? tf]}(/es(faef;s ifjl?elgl m;?t
intramolecular overlap is allowed. For such polymer model PArS=Fid ¥ "ex P
the total bonding potentia¥y(R) (a sum of bonding poten- of the free energy we refer the reader to our earlier paper

tials v, between the monomersatisfies [29]. . . .
b A starting point of every FMT-class DFT is the ansatz that
M-1

&(risy—ri| - 0) the excess free energy densdy can be expressed as a

exg - BVp(R)] = 11 # (1 simple function of the weighted densitiesg). Our prescrip-

i=1 4m tion for @ closely follows the first order thermodynamic per-

whereR=(ry,r5, ...,ry) denotes a set of coordinates de- turbation theory(TPT1) of Wertheim[31], who showed that
scribing the monomer positions. The needle-needle potentid'€ €XCess free energy of a polymer system can be treated as
is Vyy=0 for all separations and orientations, while the SUM of the excess free energy of the reference system con-
polymer-segment—needle potentigy, and the pair poten- taining gnbonded monomers plus a perturbation based.on
tial between two polymer segmentéyp, is infinite if a pair connecting the monomers together to form the polymer caoils.

of objects overlap and zero otherwise. A sketch of the preserW hat ma_kes_TPTl extremely a_ttractive from the practical
model is depicted in Fig. 1. Clearly, such a model of polymerpo'nt of view is that the perturbation excess free energy con-
is highly simplified but it satisfies the requirement @f tains information about the radial distribution function
polymer having excluded volume arii) obeying the scal- (RDPF) of the unbonded monomers in the reference system
ing regime for sufficiently long chains. It is also, in principle, only.

straightforward to incorporate attractive interactions between YU ﬂ”d Wu[30] e;]xtended Wertheim’s fwst-or?er pertur_l:)alll-
polymer segments. tion theory to inhomogeneous mixtures of tangentially

in specifying the functional we closely follow ReR29]. jointed hard-sphere chains by proposing a density functional
We begin by writing down the grand potent@l of the sys- theory, where the contribution to the excess free energy den-

tem as a functional of local densities of polymg«(R) and sity ®p due to the chain connectivity is expressed in terms of
needlespy(r , ®) FMT-style weighted densities. Following Rd30] we as-

sume thaf, is a functional of the local density of rods and
Qlpp(R),pn(r, @)] = Flpp(R), pn(r, o)] average segment densitigs{r) defined as

A. Fundamental measure theory functional

+ | dRpp(R)[VEA(R) = ] S S
J pe ' K pps(r) =2 ppsi(N) =2 | dRSr =r)pp(R),  (3)
i=1 i=1

dw
+ J dr f 4—pN(r,w)[vg§{(r,w) - .- _ _ _
m wherepps;(r) is the local density of the polymer segmeént
(2 The total excess free energy of an inhomogeneous mixture of
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hard rods and tangent hard-sphere chains can therefore benctions are given in Ref[20]. Equations(5) and (7)
written as specify the reference part of the excess free energy.
Yu and Wu[30] proposed a way of adopting the pertur-
BFexzf dr f d—w[<l>pN({nﬂ)}) + D) + Dpnd})]. bation part, based on Wertheim's TPT1, to inhomogeneous
4ar mixtures of chains of freely-jointed tangent hard spheres. For
(4) the present system we apply a similar strategy and write the

) ) excess free energy density due to the chain connectivity as
In the above ®pyt+Pyg describes the reference mixture of

hard spheres and hard rods, while the excess free energy
density due to the chain connectiviyp is an “inhomoge-
neous counterpart” of the perturbation term in TPT1. ® P s (Pra )
There are several expressions for the hard-spheralpart Where {=1-ny, -ny,/(n,")*, while yys,, denotes the con-

of the excess free energy density and we have some freedoi@ct value of a sphere-sphere RDF in the reference mixture of
in selecting a particular formula. For the present problem wdard spheres and hard rods. Unfortunately, to the best of our
choose the “White-Bear” version of FMB2,33 in conjunc- knowledge, no closed and accurate expression for this exists;
tion with a modification allowing for the occurrence of a therefore further approximations are necessary. The first

. 1-M .
Pp(fnl}) = NP NYpene(o: inPH1,  (10)

stable freezing transitiof84]: guess is to ignore the influence of the rods on the contact
PP ) (P value of the RDF completely and to approximatg., by
By (NP = = n® In(1-nP) + Ny Nz ~Nvr -Nvo the contact value of a sphere-sphere RDF in the reference
HS e 0 3 1 —n(3P) system of pure hard sphereg, as proposed by one of us
P.B) in Ref. [29]. To thi d follow Ref[30] and
o 23n(3,3)+(1_n(3p))2|n(1_n(3p)) ( fln ef. [29]. To this end we follow Ref[30] an
+ (nz ) (1-&) (P) (P) ) employ
36m(ng )2(1_n3 )2 1 (P) ¢ ( (P))20,2é«
n, "o n
5 +; n(P) = + 2 + 2 .
( ) yhs(U { « }) 1 _ngp) 4(1 —n(3p))2 72(1 —n(3p))3

where g(r):|n§,?(r)|/n(2p)(r). The polymer weighted densi- (11)

ties n;P)(r) are evaluated from
It is interesting to point out that it would also be possible to
Py, , N (P , follow the different approach of Ref35] to obtain an ap-
ni(r) = f dr’ ppdr W(r =17), ) proximation for the contact value of the RDF. The resulting
) P expression is slightly more complicated than Efjl) but
where the weight functionw/ (1), @=3,2,1,0¥2,V1 are  yields numerically very similar results in the whole fluid
given in Ref.[20,22 and[29]. range. The above equation, together with E&, (7), and
The polymer-needle contribution is taken from Schmidt's(10), completely specifies the functional, and we abbreviate

functional for hard-rod—hard-sphere mixturgZ0]. Follow-  this theory as DFT1. This approximation renders inde-
ing this approach the excess free energy density due to vapendent on the density of rods.
ishingly thin needles can be written as

(1N)n(2PN) B. Approximation for the contact value of the radial

CDPN({H(CL)}) =- néN) In(1- n(gp)) + (7) distribution function

1-nd’
. N ° ] It is expected that for high densities of rods DFT1 will
where the needle weighted densities,’, are obtained |ead to discrepancies connected with rod-induced depletion
through(spatia) convolutions of the needle local density and jnteractions. The overall effect is that the contact value of a
the corresponding orientation-dependent weight functions sphere-sphere RDF in the hard-rod—hard-sphere mixture is
higher compared to the corresponding contact value for the
nN(r, w) :f dr’ pn(r", @)W -1, @), a=0,1. one-component hard-sphere flujglg.n > Ype IN Order to im-
prove the functional these depletion interactions, which in
(8) the case of noninteracting rods are found to be purely attrac-

The “mixed” polvmer ment-needle weiahted densit tive, should be taken into account. We can do so by “inte-
< ed’ polymer segme eedie weighte ens y’grating out” the needle degrees of freedom to arrive at an

g, is obtained via spatial convolution of the polymer Seg-ggective one-component description whereby  colloidal
ment density and an orientation-dependent weight function geres interact via an effective pair potential—the depletion
. o) potential W(r). This approach has already been used in re-
ny V(r,ew) = f dr'ppdr )Wy, (r =1’ @). (9)  cent studies of depletion potentid36] and wetting[24] in
hard-rod—hard-sphere mixtures. Froifr) we can extract
As in every FMT, weight functions are connected with thethe contact value of the sphere-sphere RDF. In principle, this
geometrical properties of the particles. For the BF model otan be achieved by several methods, e.g., by solving numeri-
hard-rod—hard-sphere mixtures Schmidt was able to provideally the Ornstein-Zernike equation with an adequate closure
a set ofw(;) that leads to aompletedeconvolution of the or by minimizing a DFT that employs the depletion potential
corresponding Mayer bonf =exp—BV;)) - 1. These weight [24], but since we want to use this result in subsequent DFT
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calculations, an analytical formula would seem more practi-
cal. Therefore, we use the well-known high temperature ap-
proximation

Ynsnr( @ 100 = o {7 Dexd = BW(a™ 1 {n{})].
(12)

Yamanet al. [37] proposed a quasiexact fit for the contact

value of a depletion potential between two identical spheres
(of diametero) immersed in a sea of hard rods of length

For the present problem we recast it using FMT-style
weighted densities

4. () — A ngN) L n(ZPN) E ] 1 1 1 .
BW(o ,{na})—W(a,L)l_n(sP) ex Zl—ngp) , (13 — ——
Mp
where
o - 1+1.7524L/0) _ FIG. 2. Phase equilibria for hard_—ropl—polymer mixtures result-
W(o,L)=-—L% : ) ing from the present theoDFT2, solid line$ and the theory from
12~ 1+2.66396L/0) +3.929L/0)? Ref.[29] (DFT1, dashed lineplotted in the polymer packing frac-
(14) tion 7p=(m/6)0*Mpp and dimensionless needle reservoir density
p(h?Lzo- representation. The binodals were evaluated for systems
In the limit of vanishing rod density the contact value of with size ratiog=L/o=1 and polymer wittM=1, 2, and 10. For
Yhsthrs given in Eqg.(12), reduces to the accurate approxima-M=1 both theories yield identical phase diagrams. Black circles
tion of the contact value of the RDF of a pure hard-spheréndicate the critical points of the demixing transitions.
fluid, Eq. (11), and is quasiexact in the limit of vanishing
sphere density. If both the sphere and the rod density is noweighted densities vanish whereas the scalar weighted den-
vanishing, the approximation of E¢12) can be tested nu- sities become proportional to the corresponding bulk densi-
merically, e.g., by DFT within an effective one-componentties. It is straightforward to obtain the corresponding expres-
picture[24]. We find that, for moderate densities of the rodssjons for the free energy, pressure, and chemical potentials of
and sphere, Eq12) and the numerical results agree very poth specie$29].
nicely within a few percent. For high densities of rods and  Under favorable conditions a mixture of polymer and hard
sphere the competition between packing effects and thgds demixes into polymer-rictiod-poo) and polymer-poor
highly attractive depletion potential reduces the contact valugrod-rich) phases. The coexisting equilibrium densitigs-
of the RDF considerably as compared to the high temperapdalg, the spinodals, and the critical points were obtained by
ture approximation. However, this does not seem to be @applying a procedure described in detail in R&9].
serious problem. In the case d=1, when the fluid-fluid In Fig. 2 we show examples of binodals resulting from the
phase separation is located at high reservoir densities of thgresent theory DFT2so0lid lineg, and from the DFT1 theory
rods and hence the discrepancy between(Ez).and thereal  from Ref.[29] (dashed lines The phase diagrams, plotted in
contact value of the RDF is expected to be largest, the difthe polymer packing fractionyp=(7/6)c°Mpp, versus the
ference between the binodal predicted by the new and the olgimensionless needle reservoir densﬁ&?Lza, representa-
approach vanishes. Al is increased, the binodal of the (o \were evaluated for systems wiM=1,2,10 forcon-
fluid-fluid phase separation moves to lower reservoir de”Sistantq:L/azl. For the special casé =1 (the uppermost
ties of the rods and the approximation of Ef2) becomes diagram both theories reduce to the BF theory.
more reIiabIe. Note, however, that if.the size raqibecomes' We observe that, with increase of the chain length, both
large, effective many-body interactions becomes more iMtnepries predict broadening of the phase coexistence and a
portant so it should be expected that the predictions of thgpift of the critical point towards lower polymer packing
contact value of the RDF based solely on the knowledge ofyactions and lower reservoir needle densities. The binodals
the depletionpair interaction\W(r) becomes less reliable. from DFT2 theory are somewhat broadened, especially the
Equations(12)—(14) together with Eqs(5), (7), and(10)  polymer-rich side of the diagrams, leading thus to a larger
form a complete prescription for the new functional. The gifference between the coexisting polymer densities but the
DFT2 theory still reduces to Schmidt's functiorf@0] if M gverall effect is rather moderate. This may come as a surprise
=1 and to Yu and Wu'’s function4B0] if the density of rods  at first but is in fact just a fortunate consequence of the
pn=0. The functional idinear in the local density of rods.  apove-mentioned shift towards lower reservoir needle densi-
ties.

Ill. RESULTS We have also analyzed the phase behavior in the limit of
very long polymer chains resulting from DFT2 theory. Al-
though the relevant figure is not shown here, we have veri-

If the local densities of both species are isotropic, Eqsfied that in the limitM —c the polymer critical packing
(6), (8), and (9) can be evaluated analytically. The vector fraction tends to zero. On the other hand, the rod critical

A. Demixing in the bulk phases
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density tends to a constant virtually independent on the size
ratio . This behavior is characteristic of the so-called “pro-
tein limit” of colloid-polymer mixtureq 28,38 and was also
found to hold within DFT1 theory29].

(a)

3

Pps@ ©

B. Hard-rod—polymer mixtures close to a hard wall

The most important feature of every DFT is the ability to
describe inhomogeneous systems. In the present section we
apply the theory outlined in Sec. Il to describe a mixture of . . . . .
hard rods and tangent hard sphere chains close to a hard L (b)
structureless wall. The equilibrium profiles of both species o1l /M=l0 -
can be obtained by considering the condition ” -

0.1

Pps(2) ©

H0pp(R).pn(r )] _ AU peR)pulr )] _ o 1o
3pe(R) Son(r ) | !

which leads to the following equation for the average seg- 0
ment density profile

FIG. 3. Average segment density proflles of tangent hard-sphere
ppdr) = exp Bup) f drRY, 8(r - r chains with the bulk segment densu#) =0.1 in a hard-rod—
j=1 polymer mixture (solid lines and in a one component system
(dashed linesclose to a hard wall. The dimensionless nedgdies-
xexp| = BVL(R) - B2 \(r)) |, (16) tem denS|typ(b)L2(r 4 for all chain lengths except favi=100,
= Wherep(b)Lza 2.5. The chain lengthis! are marked in the figure.

T The size ratio in both partg=1.
where\(r;) is given by

OF ex
)\j(rj):5—+vj(rj): (17)

ps(r'j) Let us now discuss the structure of the hard-rod polymer
mixtures close to a hard wall. We restrict ourselves to the
case of supercritical state points such that the system is free
of the onset of the wetting transition. In Fig. 3 we show the
M representative examples of the average segment density pro-
- — B\ : , files of tangent hard-sphere chains consistin 1, 2,5,
pedlr) ex;iﬁ,up)% exiL= AN (D16, (1)Gue(1), 10, and 108 number ofpbeads evaluated for t%/eoi)ulk segment
(18) density ppéa's 0.1 in a hard-rod—polymer mixturésolid
lines) and in a one component systeiglashed lines Bulk
where the propagator functia@;(r) is determined from the density of rOdSp(b>L20' 4 in the system for all chain lengths

anduj(r;) being an external potential acting on tjta seg-
ment. Equatior{16) can be rewritten in a more compact form

recurrence relation except forM=100 in WhIChp<b)L20' 2.5. For systems with-
r=r)) out needles one observes that the polymer is depleted from
_ / / -r / the region close to the wall. The contact densityNbr1 is
G-r—drex—)\-r— r L . -
i(r) J A= BN(r)] 47a? Gjalr) lower than the density in the bulk. This effect, characteristic

(19) for low segment densities, has been already reported in the

literature [39-41]. The addition of the needles causes the

for j=2,3,...M and with Gy(r)=1. Conversely, the contact density to increase and the region in the vicinity of
orientation- dependent needle density profile can be obtainefte wall is now enriched in polymer. The excess adsorption

from isotherm, I'=fdZ ppq2) - pps] where we integrate fronz
=g/2 where the density profile make the jump to infinity,

I )= ex exnl — BVN(r may even change the sign; for instance, fb= 10 [cf. Fig.
(T @) PBun) p[ AVen(r @) - ’BﬁpN(r )|’ 3(b)] one hasl'¢?=-0.055480 for the one-component sys-

(20 tem (dashed ling whereas in the mixturésolid line) I'o?
=0.034673. Only for the longest chains studibti 100]cf.
In the planar symmetry the average segment density prarig. 3(b)] the lower needle density was insufficient to sig-

file becomes a function of the distanezefrom the wall, nificantly alter the structure of the polymer fluid. In this case
ppsr) = ppd2), whereas the needle density profile dependsne observes a further broadening of the depletion zone.
on z and the orientatiord, p\(r,®)=p\(z,6), with 0<4 Within our theory it is possible to track down the profiles
< /2 (cf. Fig. 1). Equations(18) and (20) can be solved of particular segments. In Fig. 4 we display the midgelid
numerically by a standard Picard meth@2,30. lines and end(dashed lingssegment density profiles for a
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FIG. 4. Middle (solid and dotted linesand end(dashed and <

dash-dotted linessegment density profiles of tangent hard-sphere
100-mers in a hard-rod—polymer mixtugize ratiogq=1, solid and | | |

dashed lingsand in a one component systefmotted and dash-
dotted line$ close to a hard wall. The profiles {a) were evaluated O[rad]
for pg’;<r3=0.4 whereas iitb) for pg’é(ﬁzo.l. The bulk needlésys-

tem) density in both partp(,\?)Lza=2.5. The profiles are normalized

by the corresponding bulk density. FIG. 5. (a) Orientation averaged density profiles of needles in a

hard-rod—polymer mixture close to a hard wall. The profiles were

mixture of hard rods and 100-mers evaluatedy%o-:’:OA evaluated for different chain lengti listed in the figure and for
[part ()] and (b;a-3=0 1 [part (b)]. Shown are also the the size ratiog=1. The bulk polymer segment densizb)(f;of’zo.l
; Pp ; ‘ -~ whereas the bulk needisystem density p”’L20=4 for M=1, 2
middle (dotted line$ and end(dash-dottelsegment density B 5 ooceysiel Yy L » S

profiles of the cone component 100-mer fluid at the sam@&nd 10, andpy'L7c=2.5 for M=100. The profiles are normalized

bulk segment densities. We note that, similar to the averagly he corresponding bulk densityb) Needle density profiles
' evaluated along the line of closest contact with the veza(ld)

segment profiles from Fig. 3, the contact values of bOth—cos{H)LIZ. The profiles were evaluated for the systems corre-

middle and end segment profiles increased but qualitativelg . . ) .
. . . ding to(a@). The chain length#! ked in the fi .
the structure of the profiles remains unchanged, i.e., the end """ o@- The chain leng are marked in the figure

segments always adsorb preferentially to the middle seg- . . )
ments, irrespective of the polymer density. Thus we conclud&reases. The integrals of the profiles from Figp)Gare re-
that the addition of the needles does not alter qualitativelyated to the pressure2]. For the present case of a mixture
the orientation of the polymer close to the wall. of hard rods and polymer it can be shown that

The structure of the hard rods close to the hard wall is g
investigated in Fig. 5. Pafg) shows the orientation averaged _ w +
density profiles of needles in a mixture with polymer of dif- BP = ppd0i2) +f EPN(Z .0)- (21)
ferent chain length. The polymer segment denp[ﬁgzo.l,
whereas the needlsysten) densitprb)Lza=4 forM=1, 2, The present DFT is constructed so that this sum rule is sat-
and 10, andp(Nb)Lzazz.S for M=100. We note that foM isfied and hence can be used to establish the correct imple-
=1 (i.e., for the hard-rod—hard-sphere mixtutiee first sharp mentation of the DFT and verify the numerical accuracy of
maximum atz/ o= 0.5 is slightly below the bulk needle den- our calculations. For example, féd =10 systems from Fig.
sity and is followed by a subsequent minimum. For longer5 the pressur@Po®=4.5475, whereas the right-hand side of
chain length this minimum becomes shallower but longelEg. (21) obtained from numerical calculations is 4.54@le
ranged. This is accompanied by the gradual increase of thevel of agreement depends of course on the grid)sitlee
first maximum. Partb) displays the orientation needle den- wall contact distribution sum rule for a model hard-body
sity at the distance of closest approach of the needle’s centamphiphiles within FMT, which is somewhat similar to the
to the wallz'(6)=cogd)L/2 for systems from Fig.®). An  sum rule Eq(21), was studied in Ref.27] and was used to
increase of the chain length leads to an increase of the conerify their numerical procedures.
tact value for small angles and a decrease of the contact Further insight into the structure of the needles close to a
values close tar/2. This implies that an orientational order hard wall can be inferred from the orientational order param-
of needles at the contact decreases as the chain length ieter profile
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" M T 7] dency of needles to adopt anisotropic configurations.

IV. CONCLUSIONS

o1f o7 . In this work we propose an improved version of the fun-
damental measure theory for mixtures of hard rods and poly-
mer built of freely-jointed tangent hard spheres. A semi-
empirical prescription for the contact value of the depletion
potential between two spheres immersed in a sea of rods and
7 the high temperature approximation are used, yielding a pre-
scription for the contact value of the sphere-sphere radial
distribution function in hard-rod—hard-sphere mixture that
J 1 2 3] depends on the needle density. When compared with the old
sl o formula[29] the new functional gives slightly broader phase
0 0.5 1 15 2 25 3 coexistence envelopes but the changes affect mainly the
7/ polymer-rich binodal branches. In the long-chain limit the
. . . critical needle density tends toward a finite value almost in-
FIG. 6. Orientational order parameter profiles for a hard'md_dependent on the size ratip
polymer Erg)ixture close to a hard wall. The bulk polymer segment We have also analyzed the structure of hard-rod—polymer
d(eb;'ISZIty_pPS(TS =04, whereas the (E)””z‘ feed'esySte_”) density  mixtures close to a hard wall. An increase of the chain length
py Leo=4forM=1, 2, and 10, angy L°0=2.5 forM=100. Posi-  |ga4s to an increase of the average polymer segment contact
tive values of(P;[cos6)]) indicate normal while negative values 51,6 This behavior may lead to a qualitative difference of
indicate parallel orientation to the wall. the polymer segment profiles, from an effective repulsion to
an effective attraction, and to the opposite sign of the excess
adsorption. By analyzing the orientational order parameter

02 0.01

< Pz(cos(e)) >

>
|

< P,(cos(8)) >

-0.01

dewpy(r, w)P(cos6) profiles we have found that the polymer coils decrease the
(Py(cos0)) = , (22)  tendency of needles to adopt anisotropic configurations.
fdeN(r,w) It would be of interest to investigate interfacial behavior
and in particular the wetting of the hard wall in such sys-

tems. One can expect a wealth of surface phase transitions,

= 2_ i -
where PZ(.)(.) 3/2¢-1/2 is the second Legen_drg polyno similar to that found in Ref[.24]. Another research direction
mial. Positive values of the order parameter indicate a ten-

. : : . is to take into account the rod-rod excluded volume interac-
dency to align perpendicular to the wall while negative val-; S o
: . . tions, similar in spirit to recent theory proposed by Eszter-
ues point to parallel orientation to the wall. The order

parameter profiles shown in Fig. 6 were evaluated for the"amn and Schmid@3]. This would open a possibility of the

. ) orientational phase transitions in such systems. Some of
systems with the polymer segmfent (bb)uII2< denp&g—OA and these topics are currently being investigated.
for the bulk n(e)edle(systen) densityp,'L°0=4 for M=1, 2,

by 2 _ _ -

a_nd 10, ar_lch L°o=2.5 forM—lOO._ The profiles _show 0s- ACKNOWLEDGMENTS
cillations indicating that there exist mutually interleaved
“layers” of needles that prefer normal and parallel orienta- We thank J. M. Brader for helpful suggestions regarding
tion. As the distance from the wall increases, these oscillanumerical implementation of the present theory. This work
tions are gradually damped. An increase of the chain lengthas been supported by KBN of Poland under Grant 3TO9A
leads to a stronger dampening effect and decreases the tdd69 27.
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